ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.

نویسندگان

  • Y Ishibashi
  • D J Duncker
  • J Zhang
  • R J Bache
چکیده

We previously reported that combined blockade of adenosine receptors and ATP-sensitive K+ channels (K+(ATP) channels) blunted but did not abolish the response of coronary blood flow to exercise. This study tested the hypothesis that the residual increase in coronary flow in response to exercise after adenosine receptor and K+(ATP) channel blockade is dependent on endogenous NO. Dogs were studied at rest and during a four-stage treadmill exercise protocol under control conditions, during K+(ATP) channel blockade with glibenclamide (50 microg x kg(-1) x min(-1) i.c.) in the presence of adenosine receptor blockade with 8-phenyltheophylline (8-PT, 5 mg/kg i.v.), and after the addition of the NO synthase inhibitor N(G)-nitro-L-arginine (LNNA, 1.5 mg/kg i.c.). During control conditions, coronary blood flow was 49 +/- 3 mL/min at rest and increased to 92 +/- 8 mL/min at peak exercise. LNNA alone or in combination with 8-PT did not alter resting coronary flow and did not impair the normal increase in flow during exercise, indicating that when K+(ATP) channels are intact, neither NO nor adenosine-dependent mechanisms are obligatory for maintaining coronary blood flow. Combined K+(ATP) channel and adenosine blockade decreased resting coronary flow to 27 +/- 3 mL/min (P<.05), but exercise still increased flow to 45 +/- 5 mL/min (P<.05). The subsequent addition of LNNA further decreased resting coronary flow to 20 +/- 2 mL/min and markedly blunted exercise-induced coronary vasodilation (coronary vascular conductance, 0.20 +/- 0.03 mL x min(-1) x mm Hg(-1) at rest versus 0.24 +/- 0.04 mL x min(-1) x mm Hg(-1) during the heaviest level of exercise; P=.22), so that coronary flow both at rest and during exercise was below the control resting level. The findings suggest that K+(ATP) channels are critical for maintaining coronary vasodilation at rest and during exercise but that when K+(ATP) channels are blocked, both adenosine and NO act to increase coronary blood flow during exercise. In the presence of combined K+(ATP) channel blockade and adenosine receptor blockade, NO was able to produce approximately one quarter of the coronary vasodilation that occurred in response to exercise when all vasodilator systems were intact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation.

The role of ATP-sensitive K(+) (K(ATP)(+)) channels, nitric oxide, and adenosine in coronary exercise hyperemia was investigated. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus and instrumented with a flow transducer on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma c...

متن کامل

Matching coronary blood flow to myocardial oxygen consumption.

At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the loca...

متن کامل

Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels.

Adenosine is a potent vasodilator that plays an important role in the regulation of coronary microvascular diameter. Although multiple adenosine receptor subtypes have been recently cloned, the specific adenosine receptor subtypes and the underlying mechanisms responsible for the vasodilation to adenosine in the coronary microcirculation remain unknown. Therefore, in the present study we determ...

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

Invited Review HIGHLIGHTED TOPIC Skeletal and Cardiac Muscle Blood Flow Matching coronary blood flow to myocardial oxygen consumption

Tune, Johnathan D., Mark W. Gorman, and Eric O. Feigl. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol 97: 404–415, 2004; 10.1152/japplphysiol.01345.2003.—At rest the myocardium extracts 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 1998